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The dynamics of a passive admixture from an instantaneous localized source in the turbulent 
mixing zone in a pycnocline is modeled numerically. The source is simulated by specifying the 
initial distribution of  the averaged concentration of the admixture in the form of a finite function 
that takes a constant value inside a circle of small radius. The results of the calculations show 
the possibility of  situations in which the propagation of the passive admixture is determined to 
a considerable extent by convective flow generated by the turbulent mixing zone. 

I n t r o d u c t i o n .  The study of the evolution of regions of a turbulized fluid - -  turbulent mixing zones - -  
in homogeneous and stratified media is of interest in connection with the solution of a number of problems 
of geophysical hydrodynamics [1, 2]. The development of a region of turbulized fluid in a stratified medium 
is characterized by initial expansion of the mixing zone due to turbulent diffusion, a subsequent cutoff of its 
vertical growth under the influence of gravity, and the active generation of internal waves. The hydrodynamic 
aspects of this process were examined in considerable detail in [3-6]. The results of numerical modeling of 
the dynamics of a passive admixture from an arbitrarily placed, instantaneous localized source in a turbulent 
mixing zone in a homogeneous and a linearly stratified medium were given in [7]. The source was simulated by 
specifying the initial distribution of the averaged concentration of the admixture in the form of a finite function 
that takes a constant wlue  inside a circle of small radius. The significant dependence of the concentration 
of the admixture on the initial data for this quantity was demonstrated. When the centers of the turbulized 
region and the localized source do not coincide, the propagation of the admixture is characterized by a shift 
in the position of the maximum of the averaged concentration toward the center of the turbulized region, but 
this shift occurs extremely slowly in comparison with the decay of the turbulence. 

In the present paper, we consider the problem of the dynaznics of a passive admixture from an 
instantaneous localized source in the turbulent mixing zone in a pycnocline. The possibility of situations 
in which the propagation of the passive admixture is determined to a considerable extent by convective flow 
generated by the turbulent mixing zone is demonstrated. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Basic Equations. To describe the propagation of a passive admixture 
in the turbulent mixing zone in a stratified medium, we use the following system of averaged equations of 
motion, continuity, incompressibility, and transport of the concentration O of the passive admixture, balance 
of turbulence energy e, transfer of the dissipation rate e, and Reynolds shear stress (u'v~): 
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In Eqs. (1.1), U and V are the components of the velocity of the averaged motion in the directions of the x and 
y axes, respectively (the x axis is horizontal and the y axis is vertically upward, against the force of gravity), pl 
is the departure of the pressure from the hydrostatic pressure ps(y), due to stratification, g is the acceleration 
of gravity; (pl) is the averaged density defect: pl = p - p,, P, = p,(y) is the density of the undisturbed 
fluid: dps/dy <~ 0 (stable stratification), p0 = ps(Y) is the characteristic density of the undisturbed fluid 
corresponding to y = Y, the pulsation components are primed, angle brackets denote averaging, the fluid 
density is assumed to be a linear function of temperature; stratification is assumed to be weak, and the 
Oberbeck-Boussinesq approximation is used; terms containing a cofactor in the form of the coefficient of 
laminar viscosity or diffusion are omitted under the assumption of smallness. 

Model of Turbulent Motion. The normal Reynolds stresses (u?) (i = 1, 2) are determined from the 
isotropic approximations [8] 

(u~u' i) 2 1-C2 (~ i  2 P) l - C ,  (G_iei 2 G) 
-e = -~rij + C1 -~6ij + ~ ;  ~6/1 ; (1.2) 

{ cOui , ,  au, l P~j=- (,4,,~)y;-;~k+(,,;,d cO.j,j, v~j= ((~4/)gJ +(,,[,/)g4, 
g = ( O , - g , O ) ,  UI =U,  U2 = V, 2P = Pii, 2 G = G i i .  

To find the components of the flux vector {u~p') (i = 1, 2), as in [7], we use the following consequences of the 
approximation of local equilibrium: 

-(u'p') = gp= cO(P) -(v'p') = gp, cO(P) 
cOx ' coy 

The coefficients of turbulent viscosity Ke, ,  Ke~, Kez, and K~y and of diffusion Kp.,  K#y, Ko,,  and Koy are 
determined from the equations 

Ke. = C8 e(u'2-''-~) K~. Ke. g ,y  = Cs e(vrz) Key Key 
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We took the following empirical constants of the model [9, 10]: C~I = 1.45, Ce2 = 1.90, a = 1.3, C1 = 2.2, 
C2 = C3 = 0.55, C, = 0.25, Ct = 1.25, Clt = 3.2, and C2t = 0.5. 

Initial and Boundary Conditions. We took the following boundary and initial conditions for system (1.1): 

U = V = ( m )  = e = e = O = (u 'v ' )  = O, r2 = z 2  + y2 __, oo ,  t >t O, 

e(0 , . ,  y) = e0(~), ~(0, ~, ~) = ~0(~), e(0 ,  ~, ~) = o0( . ,  ~), ~2 ~< R ~, 

e (o , . ,  y) = ~(o, z, v) = o(o,  x, v) = o, ,-~/> R ~, 

(p~) = U = V = (u 'v ' )  = O, - c o  < ~ < oo ,  - o o  < y < oo ,  t = O. 
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Here e0(r) and e0(r) are the self-similar distributions corresponding to a homogeneous fluid (finite, bell-shaped 
functions) and R is the radius of the region of turbulized fluid at the initial time. The  function O0(z, y) was 
set equal to 0 ~ = c o n s t  inside a circle f~0 of radius R0 < R and zero outside this circle. This simulated an 
instantaneous localized source of the admixture. In the numerical solution of the problem, the zero boundary 
conditions corresponding to r ~ oo were brought in to the boundaries of a sufficiently large rectangle. 

The density distr ibution in the pycnocline was given by the equation 

ps(y) = po(1 - a/3tanh((y - Y)//3)), 

where a,/3, and Y are positive parameters.  
Normalization. The  variables of the problem are made dimensionless using the scales of length R, 

velocity U0 = fie(0, 0, 0), and averaged concentration 0 ~ We also use the representation {pl}* = (pl}/aRpo, 
where a - -(1/po)dps/dy at y = Y. As a result, the quanti ty 4~r2/Fr 2 appears in the dimensionless equations 
instead of g, where Fr = UoT/R is the density Froude number  (T = 2~r]v/~ is the Vs period). 
Henceforth the dimensionless variables are marked by an asterisk. 

Algorithm for Solving the Problem and Its Testing. The  finite-difference algorithm is based on the 
application of methods  of separation with respect to spatial variables, has first-order approximation in time 
and second-order approximation in the spatial variables, and was presented in [6]. 

The  mathemat ica l  model  for this s tudy differs from the model used in [7] to describe flow in the case 
of a linearly stratified med ium by the way the coefficients of turbulent  viscosity are represented [in [7] they 
were obtained as a consequence of the isotropic approximations (1.2)]. This is because the  model of [7] yields 
unsatisfactory results in describing the wave pattern of flow in a pycnocline. The  numerical model developed 
was tested on the  problem of the  evolution of a zero-momentum wake in a linearly stratified medium. The 
results of a comparison of calculated data  on the behavior of the  turbulence characteristics in the wake with 
the experimental da ta  of Lin and Pao were given in [11]. There we showed tha t  the  calculated patterns of 
internal waves generated by the  wake in the pycnocline are consistent with the known experimental  data  [12]. 

2. C a l c u l a t i o n  R e s u l t s .  To analyze the turbulent  diffusion of a passive impur i ty  from a localized 
source in the turbulent  mixing zone in a pycnocline, we performed a series of numerical experiments,  in which 
we varied the position of the  source of admixture within the turbulized region (the parameters x0 and y0), 
the width of the transit ional layer of the pycnocline (the parameter  fl), and the  mutual  arrangement of the 
turbulized region and the  fluid layer with the maximum vertical density gradient ( the parameter  Y). 

The  origin of coordinates coincides with the center of the turbulized region. By analogy with the 
linear stratification [7], we consider the following variants of the  coordinates of the center of the circle fl0: 
x0 = y0 = 0 (variant No. 1), x0 = 0 and y0 = 0.57R (variant No. 2), x0 = y0 = 0.57R (variant No. 3), and 
x0 = y0 = 0.28R (variant No. 4). The  main results are given for Fr = 4.7. 

The  calculations were made  on nonuniform orthogonal grids, which bunch together in the vicinity of 
the turbulent  mixing zone and fl0, having 120 x 100 nodes. Here the grid analog of fl0 was an approximate 
simulation of a circle with a diameter  of six cells, Ro = O.17R. To est imate the accuracy, we made calculations 
on a grid with 240 x 200 nodes and horizontal and vertical cell sizes half as large in the vicinity of the turbulent  
mixing zone. The  resulting deviations did not exceed 5% in the uniform grid norm. 

The  results of the  calculations in a pycnocline with Y = 0 and fl = 0.19R are shown in Fig. 1 ( t]T = 3). 
Streamlines of r = coast are shown in Fig. la; curves 1-9 correspond to levels of 1.9- 10 -3, 1.5- 10 -3, 
9.4 �9 10 -4,  3.8 - 10 -4,  0, - 3 . 8  �9 10 -4, -9 .4  �9 10 -4, -1 .5  �9 10 -3, and -1 .9  �9 10 -3. Isolines of the turbulence 
energy e/era(t) = const, era(t) = maxe( t ,x ,y)  (Fig. lb) are given at levels of 0.01, 0.1, and then up to 0.9 

x~y 

with an interval of 0.1. Isolines of the averaged concentration of the passive admixture,  O/Ore(t)  = c o n s t ,  
Ore(t) = max O(t, x, y) (Figs. lc  and 2), are given for variant No. 3 (x0 = y0 = 0.57R) of the initial position 

of the source; here Fig. 2, in contrast  to Fig. lc, corresponds to a pycnocline with Y = 0.57R and/3 = 0.19R. 
In Figs. lc and 2, the point marks the node of the grid region at which the averaged concentration reaches 
a maximum; the dashed curve marks the boundary of the turbulized region, determined by the equation 
e(t, x, y) = 0.01e,~(t); the  levels are the same as in Fig. lb. It is seen that  the spot of the passive admixture, 
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initially concentrated in a small round region within the turbulized zone, eventually spreads out in the form 
of tongues along the horizontal interlayer of fluid with the maximum vertical density gradient, duplicating the 
shape of the turbulized region. The patterns of outflow of the turbulized region obtained in these calculations 
are similar to those observed in laboratory experiments [13], in which the dynamics of spots of partially mixed 
fluid in a thin-layered stratified medium was investigated. 

Curves 1-5 in Fig. 3 illustrate the time variation of the maximum averaged concentration O*(t) .  Curves 
1-3 correspond to calculations in a pycnocline with Y = 0 and ~ = 0.19R (variant Nos. 1-3 of the position 
of f~0); curves 4 and 5 correspond to linear stratification (variant No. 3:z0 - y0 = 0.57R). The difference 
in the behavior of curves 1-3 can be explained by the nonuniformity of the distribution of the turbulent 
diffusion coef~cients/to= and K0y. Curves 6-8 describe the behavior of the characteristic turbulence energy 
ec( t ) /U~ = e(t,0,0)/U02 = e~(t) at the center of the region of turbulent mixing for nonlinear (curve 6) and 
linear (curves 7 and 8) density distributions of an unperturbed fluid with depth. Here curves 5 and 8 were 
obtained in calculations from the model of [7]. It is seen that the two models yield similar results in the case 
of linear stratification. Over the time interval t /T  E [0, 10] the turbulence energy decreases by four orders of 
magnitude. 

In Fig. 4 we show the t ime variation of the abscissa x,~(t) and ordinate N~(t) of the grid node at which 
the concentration maximum O*( t )  = O*(L z,~,~/,~) is reached. Here curves 1-3 were obtained for variant 
No. 3 of the initial position of the admixture source (z0 = N0 = 0.57R): curve 1 refers to linear stratification, 
curve 2 to a pycnocline with Y = 0 and ~ = 0.57R, and curve 3 to a "narrow" pycnocline (Y = 0 and 
~ /=  0.19R). In contrast to curve 3, curves 4 and 5 correspond to variant Nos. 2 and 4, respectively, of the 
coordinates of the center of f f  (curves 4 refer to z0 = 0 and N0 = 0.57R and curve 5 refers to z0 = N0 = 0.28R; 
Y - 0 and ~ = 0.19R) and curves 6 and 7 correspond to the new versions of the position of the fluid layer 
with the largest vertical density gradients ps(y) relative to the center of the turbulized region (curve 6 refers 
to Y = 0.19R and curve 7 refers to Y = 0.57R; ~ = 0.19R and z0 = N0 = 0.57R). 

In the case of linear stratification, the value of zm(t) is nearly constant over the entire time interval 
examined (curve 1 in Fig. 4a). In the case of a pycnocline, this quantity grows intensely for all t / T  except 
for a brief initial stage of development of the turbulized region when, as in a homogeneous fluid, turbulent 
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diffusion is dominant. The growth of Xm(t) is associated with a property of the wave pattern of flow in the 
pycnocline [6, 12], namely, the formation in each quadrant of the (z,y) plane of a convective vortex of high 
intensity, which migrates along the horizontal axis in the direction of increasing Ixl (Fig. la). Such behavior 
of Xm(t) is typical of all the versions of the position of the admixture source examined (curves 3 and 5) and 
values of the parameter Y (curves 3, 6, and 7). At the same time, curve 2, which corresponds to a pycnocline 
with a broader transitional layer, is close to curve 1, which refers to linear stratification. 

In Fig. 5, as a supplement to Fig. 4a, using the example of a calculation with the parameters x0 = 
y0 = 0.57R, Y = 0, and/3 = 0.19R, we compare the time dependences of the grid analogs of the abscissa 
x, of the maximum point of the stream function (curve 1), the abscissa Xm of the concentration maximum 
(curves 2 and 3), and the horizontal dimensions Lz and Iz of the turbulized region (curves 4-7). Here curves 
4 and 5 illustrate the behavior of the horizontal size of the turbulized zone, calculated from the equation 
e(t,Lz,0) = 0.01e(t, 0,0), and curves 6 and 7 were obtained from the equation e(t,/z,0) = 0.5e(t, 0, 0). 
Curves 3, 5, and 7 correspond to calculations on a 240 x 200 grid. These data show that, as in the case of a 
homogeneous fluid [7], turbulent diffusion leads to a shift in the position of the concentration maximum to 
the coordinate origin. The convective flow induced by the collapse of the turbulent mixing zone causes intense 
horizontal transport of the admixture. Figures 4a and 5 reflect the interaction between turbulent diffusion 
and convective transport. The behavior of curves 6 and 7 in Fig. 5 is the result of the generation of turbulence 
energy by the convective flow. 

The calculations show that in the case of linear stratification, the coordinate ym(t) increases slightly 
in the initial stage of development of the turbulized zone and then declines (curve 1 in Fig. 4b). Even at 
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t /T  t> 4, however, this quantity differs from zero (like xrn for an asymmetrical placement of the source), 
which indicates that the averaged concentration of the passive admixture "remembers" the features of its 
initial distribution. Behavior similar to that of ym also occurs in a pycnocline with a broad transitional layer 
(curve 2). At the same time, the numerical experimental data show that in the evolution of the turbulized 
region in a pycnocline, the averaged concentration of the passive admixture at late times reaches its maximum 
in interlayers of fluid with the largest vertical density gradients. In the case of a pycnocline with a narrow 
transitional layer, in particular, ym(t) at tiT/> 1 depends essentially on the value of Y (curves 3, 6, and 7 in 
Fig. 4b). 

Thus, in all cases in which z0 and y0 differ from zero, the concentration of the passive admixture 
reaches a maximum at a considerable distance from the origin of coordinates, not only at late times but also 
for t /T >1 4. 

Calculations were also made for a larger Froude number (Fr = 22.1). The data obtained are in 
qualitative agreement with those given here for Fr = 4.7, but, as in the evolution of a turbulized region in a 
linearly stratified fluid [7], the action of stratification is manifested later, i.e., for larger t .  = (t/T)Fr = tUo/R. 

Memory effects in the propagation of an admixture in a nonisothermal, free turbulent flow are fairly 
well known [14, 15]. They are also observed in the problem of the dynamics of a turbulent mixing zone in 
homogeneous and linearly stratified fluids [7]. The present results demonstrate the important role of convective 
flow in the propagation of a passive admixture from a localized source in the turbulent mixing zone in a 
pycnocline. 
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The main results of this work were presented at the International Conference on Mathematical Models 

and Numerical Methods in the Mechanics of Continuous Media (Novosibirsk, 1996) and the Second Siberian 
Congress on Applied and Industrial Mathematics (Novosibirsk, 1996). 

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 95-01- 
00910 and 98-01-00736). 

REFERENCES 

. 

2. 

. 

4. 

J. S. Turner, Buoyancy Effects in Fluids, Cambridge Univ. Press (1973). 
A. S. Monin and R. V. Ozmidov, Turbulence in the Ocean [in Russian], Gidrometeoizdat, Leningrad 
(1981) [D. Reidel, Dordrecht, Holland (1984)]. 
O. F. Vasil'ev, B. G. Kuznetsov, Yu. M. Lytkin, and G. G. Chernykh, "Development of a region of 
turbulized fluid in a stratified medium," lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 45-52 
(1974). 
A. M. Trokhan and Yu. D. Chashechkin, "Generation of internal waves in a stratified fluid by a 
hydrodynamically linear source (two-dimensional problem)," in: Theory of Wave Diffraction and 

551 



5. 

. 

7. 

. 

9 .  

I0. 

ii .  

12. 

13. 

14. 

15. 

Propagation: Abstracts of VII Symp. on Wave Diffraction and Propagation (Rostov-on-Don, 1977), 
Vol. 3, Izd. Ak~d. Nank SSSR, Moscow (1977), pp. 186-189. 
Yu. M. Lytkin and G. G. Chernykh, "Flow similarity with respect to the density Froude number 
and energy balance in the evolution of a turbulent mixing zone in a stratified medium," Dynamics of 
Continuous Media (Collected scientific papers) [in Russian], Novosibirsk, 47 (1980), pp. 70-89. 
O. F. Voropaeva and G. G. Chernykh, "Evolution of the turbulent mixing zone in a fluid with nonlinear 
stratification," in: Simulation in Mechanics (Collected scientific papers) [in Russian], Computer 
Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, 3(20), No. 5, (1989), 
pp. 3-29. 
O. F. Voropaeva, Yu. D. Chashechkin, and G. G. Chernykh, "Diffusion of a passive admixture from 
an instantaneous localized source in a turbulent mixing zone," Dokl. Ross. Akad. Nauk, 356, No. 6, 
759-762 (1997). 
W. Rodi, "Examples of calculation methods for flow and mixing in stratified fluids," J. Geophys. Res., 
92, No. C5, 5305--5328 (1987). 
M. M. Gibson and B. E. Launder, "On the calculation of horizontal, turbulent, free shear flows under 
gravitational influence," Trans. ASME, C98, No. 1, 81-87 (1976). 
W. Rodi, Turbulence Models and Their Application in Hydraulics, Univ. of Karlsruhe, Karlsruhe 
(1981). 
O. F. Voropaeva and O. G. Chernykh, "Numerical model of the dynamics of a momentum-free 
turbulent wake in a pycnocline," Prild. Mekh. Tekh. Fiz., 88, No. 3, 69--86 (1997). 
H. E. Gilreath mad A. Brandt, "Experiments on the generation of internal waves in a stratified fluid," 
AIAA J., 23, 693-700 (1985). 
V. A. Popov, "Development of a region of partially mixed fluid in a thin-layered stratified medium," 
lzv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana, 22, No. 4, 389-394 (1986). 
Yu. M. Dmitrenko, V. L. Zhdanov, and B. A. Kolovandin, "Influence of initial conditions on the 
structure of a nonisothermal, axisymmetric turbulent wake," Preprint, Inst. of Heat and Mass Transfer, 
Acad. of Sci. of the Belorus. SSR, Minsk (1985). 
V. I. Bukreev, A. G. Demenkov, V. A. Kostomakha, and G. G. Chernykh, "Heat propagation from a 
linear source in a plane turbulent medium," PriM. Mekh. Tekh. Fiz., 37, No. 5, 115-126 (1996). 

552 


